MAL HTTP Transport
JPL Status

Adrian Tinio
11/6/2017

Task Overview

Objective: Provide an independent
iImplementation of

1. HTTP transport binding to the MO MAL
2. XML Encoding of MAL messages

As specified in the proposed draft
recommended standard CCSDS 524.3-R-0

Task Breakdown

 MAL Header Encoding

— Implement encoder/decoder of MAL message
header to MAL HTTP header

 MAL Body Encoding

— Implement encoder/decoder of MAL message
body using MAL XML Encoding scheme

« MAL HTTP Transport Interface Binding
— Implement http/https transport

Jet Propulsion Laboratory
California Institute of Technology

Schedule/Status

Initial Task Orientation 3/20/2017

MAL Header Encoding Implementation 5/5/2017

MAL Body Encoding Implementation 6/2/2017

MAL HTTP Transport Implementation 7/14/2017

Internal integrated testing 8/10/2017

Interoperability Testing* 11/6/2017

5/5/2017

5/30/2017

7/14/2017

8/30/2017

8/30/2017

11/17/2017

Complete

Complete

Complete

Complete

Complete

Tentative schedule with
TPZ VEGA

* Interoperability testing to verify implementation delayed due to

unavailability of test personnel

Task Item

Jet Propulsion Laboratory
California Institute of Technology

Level Of Lines Of

Code

Coverage

Task Metrics

Comment

Initial Task
Orientation

MAL Header
Encoding
Implementation

MAL Body
Encoding
Implementation

MAL HTTP
Transport
Implementation

core: 534
test: 302

core: 1761

core: 1582

92%

90%

92%

Familiarizing with task, reading
blue books, white books, green
books

Relatively straightforward.
Mapping is well defined.

Implements MAL XML encoding

Supports both http and https

Jet Propulsion Laboratory
California Institute of Technology

Findings

**Walting on interoperability testing to expose
Issues with implementation resulting from
misinterpretation of standard, Iif any.

* During the course of the task, the JPL team needed
numerous clarifications on the standard and/or the
use of existing software

* A weekly log was kept to record guestions:
— 41 guestions; most resolved with input from experts

« Sampling of open questions in the following slides, with details in
backup slides

Jet Propulsion Laboratory
California Institute of Technology

Potential RID (Documentation) 1/2

Support for QoS Level CCSDS 524.3 Description not clear on how to
4.2.2 implement method call for
supportedQOSLevel

Sending Http-Response CCSDS 524.3 Unclear regarding use of http

Status in Http-Request 3.2.3.2 status code 200 OK for
Header INVOKE_RESPONSE

Logic in converting MAL CCSDS 524.3 Unclear how to go from HTTP
Header to HTTP header 3.5.4 header URI-TO back to MAL

field “URI-TO” Header field.

Jet Propulsion Laboratory
California Institute of Technology

Potential RID (Software Library) 2/2

Outdated code in MAL-
implementation library

FineTime Interpretation
Details

Default constructors for
generated data types

Missing Transmit
Acknowledge Primitive
(API)

CCSDS 521.0-B-2
4.3.17

CCSDS 521.0-B-2
4.4.5

CCSDS 524.3
4.4.6

MAL-Transport-Generic library
performs encoding on JAXB XML
objects. Encoding of JAXB XML
objects not in standard.

FineTime is specified to have up to
picosecond resolution. This seemed
to have changed later on to
nanosecond.

Code generator generates default
constructors that intialize fields to null
fields. Problematic with data types
with fields that are not nullable as
specified in standard.

Existing Java MAL implementation-
library does not have Transmit_Ack
primitive

To-Do

* Inter-operability testing to be conducted by
TPZ-VEGA personnel.

« Address issues uncovered by interops
testing

* Provide support with test plan/report
documentation, if necessary.

* Release the prototype software as open-
source

Jet Propulsion Laboratory
California Institute of Technology

Backup

Jet Propulsion Laboratory
California Institute of Technology

Support for QoS Level

In Section 4.2.2 of MAL Binding to HTTP-Transport & XML-Encoding (CCSDS 524.3-R-0), there is a
description on how to implement a method call supportedQoSLevel.

SupportedQoSLevel is a mandatory method to be implemented since we are using the MAL-
implementation-library.

But the description is not clear on how to implement them.
After asking ESA / ESOC, they suggested to make an RID for this, but the logic was never explained.

Since this is not integral part of the implementation. The implementation is bypassed, i.e. always
return true.

4 MAL Transport Interface 4.2 SUPPORTEDQOS REQUEST

Mapping
4.1 Overview 4.2.1 The SUPPORTEDQOS request primitive shall be provided.

4
4.2.2 Support for the Quality of Service (QoS) levels defined by MAL shall depend on the
equest . .
capabilities of the underlying layer used to convey the HTTP messages.

4.3 SupportedIP
Request

11

Jet Propulsion Laboratory
N A California Institute of Technology

P

@ Sending HttE-ReSEonse Status In
Hittp-Request Header

In Section 3.2.3.2, there is a table named “3-4” mapping Http-Response status codes to their
respective stages. One of the stages for the code “200 OK” is called “INVOKE_RESPONSE”.

Table 3-4: Status Codes in Response Message

Status Code Description Usage
200 OK Standard response for successful SUBMIT_ACK
HTTP requests. REQUEST_RESPONSE

INVOKE_RESPONSE
PROGRESS_ACK
REGISTER_ACK
PUBLISH_REGISTER_ACK
DEREGISTER_ACK
PUBLISH_DEREGISTER_ACK

202 Accepted The request has been accepted for | INVOKE_ACK
processing, but the processing has
not been completed.

Continued to next slide...

12

N Jet Propulsion Laboratory
N A California Institute of Technology
P Y

Sending Http-Response Status in Http-Request

However, “INVOKE_RESPONSE” is a new Http-Request stage which does not require a
response status. This is confirmed by Table 3-3 in Section 3.2.2.2. Hence, the status code is
ignored.

3.2.2.2 Requirements

The mapping of the MAL interaction messages to the corresponding HTTP requesi
response messages. and the HTTP message initiator. shall be as specified in Table 3-3.
full description of the relevant interaction types. the MAL interaction stages. and the inif
given below see reference [1].

Table 3-3: MAL Interaction to HI TP Message Mapping

HTTP Message
Interaction Request /
Type MAL Interaction Stage Response Initiator
SEND SEND Request Consumer
n/a Response Provider
SuUBMIT SuUBMIT Request Consumer
ACK Response Provider
ERROR Response Provider
REQUEST REQUEST Request Consumer
RESPONSE Response Provider
ERROR Response Provider
INVOKE INVOKE Request Consumer
ACK Response Provider
ACK_ERROR Response Provider
RESPONSE Request Provider
n/a Response Consumer
RESPONSE_ERROR Request Provider
n/a Response Consumer

13

Jet Propulsion Laboratory
California Institute of Technology

Issing Transmit Acknowledge Primitive (API)

In Section 4.4.6, the document says Transmit_Ack Primitive needs to be
invoked when an Http-Request is successful.

When it is implemented, MAL-implementation-library does not have such API
to be called.

Since this is not the integral part of the implementation, and the assumed
purpose of such call is mainly to log it, implementation ignores this instruction.

v || 4 MAL Transport Interface
Mapping

A 4.4.6 If the ivocation of the HTTP ‘REQUEST POST" primitive successfully returns, then

the TRANSMIT ACK primitive shall be called.

4.2 SupportedQoS
Request

4.3 SupportedIP 45 TRANSMITMULTIPLE REQUEST

Reauast

14

Jet Propulsion Laboratory
California Institute of Technology

Yogic in converting MAL Header to Http Header

—_— Filed “URI-TO” ———

In Section 3.5.4, The logic on
how to convert one of the MAL
Message Header named “URI-
TO” to Http Header field is
explained. This includes splitting
“‘URI-TO” to 3 different Http
Headers: “HOST”, “X-MAL-URI-
TO”, and “REQUEST-TARGET".

There is no explicit explanation
on how to reverse them on the
receiving end when converting
Http message to MAL message.

The implementation assumes
that the logic should be
reversed.

354 URITO

3.5.4.1 1If the final destmation of the MAL message as specified in the MAL header field
‘URI To’ coincides with the HTTP destination endpoint, the MAL ‘URI To’ is mapped as
follows:

3.5.4.1.1 The IP address (or host name) and TCP port number of the MAL header field ‘URI
To’ shall be assigned to ‘Host’ message header field.

3.5.4.1.2 Ifthe MAL header field “‘URI To’ contains a Source Id, then this identifier preceded
with a /” shall be assigned to the ‘request-target’ field of the MAL HTTP request-line.

3.5.4.1.3 If the MAL header field ‘URI To’ does not contain a Source Id, then ¢/° shall be
assigned to the ‘request-target’ field of the MAL HTTP request-line.

3.5.4.2 Ifthe HTTP MAL application is being used to route to another MAL node, where the
final destination of the MAL message as specified in the MAL header field ‘URI To” does not
coincide with the HTTP destination endpomt, the MAT. “URI To’ is mapped as follows:

3.5.4.2.1 The MAL header field ‘URI To’ shall be assigned to ‘X-MAL-URI-To> HTTP
message header field.

3.5.4.3 The content of the ‘X-MAL-URI-To” HTTP message header field shall be encoded
according to the rules defined in reference [9], section 2.

3.5.4.3.1 The IP address (or host name) and TCP port number of the HTTP destination
endpoint shall be assigned to ‘Host’ message header field.

3.5.4.3.2 The request-line is implementation-specific.

15

Jet Propulsion Laboratory
N A California Institute of Technology

FineTime Interpration Details

In MAL data structures, there is a time data type called FineTime. In Section 4.3.17 of MO-MAL book
(CCSDS 521.0-B-2), FineTime is an absolute date and time up to picosecond resolution.

When implementing it, there were some issues finding picosecond libraries in Java. After asking to
ESA, the definition has been changed to nanosecond. The issue is discussed in this GitHub issue

ticket.

16

https://github.com/SamCooper/MAL_SPEC_RIDS/issues/1

Jet Propulsion Laboratory
California Institute of Technology

Default Constructors for Generated

ata Types

When MAL data types
are generated by code
generator using the XML
templates, default 4.4.5 SUBSCRIPTION

constructors are The Subscription structure is used when subscribing for updates using the PUBSU
created. For some data interaction pattern. It contains a single identifier that identifies the subscription being defin¢
types, especially and a set of entities being requested.

composite data types

Example: Subscription datatype does not allow null fields as
explained in blue book.

(which does not accept Subscription
null fields), using default Composite

constructors will results

. : 23
In exceptions.

However, default

subscriptionId Identifier No The identifier of
constructors are this subscription.
compulsory as the . _ , _

.. entities List<EntityRequest> No The list of
encoder logic is tied to entities that are
it. Hence, there should being subscribed
be some information for for by this

identified
developers not to use subscription.
them blindly.

17

Jet Propulsion Laboratory
California Institute of Technology

Default Constructors for Generated
ata Types

Example: Subscription datatype does not allow null fields as explained in blue book. But
Subscription code in AP1_MAL library has default constructor which will initialize fields to null.

44.5 SUBSCRIPTION 1 3 Subscription java

The Subscription structure is used when subscribing for updates using the PUBSU Subscription setSubscriptionId()

interaction pattern. It contains a single identifier that identifies the subscription being defing

and a set of entities being requested.
org.ccsds.moims.mo.mal. structures. EntityRequestlist

Subscription

Composite
23

Subscription()

subscriptionld Identifier No | The identifier of
this subscription.

entities List<EntityRequest> No | The listof

entities that are
being subscribed Subscription(org.ccsds.moims.mo.mal.structures. Identi
for by this [
identified

led : = subscriptionld
subscription. . = pntities

18

